Graphs With Same Adjacency \& Incidence Matrix.

Mahesh N. Dumaldar*
School of Mathematics, Vigyan Bhawan, Khandwa Road, Devi Ahilya University, Indore-452 001, India.

Abstract

${ }^{1}$ The content is a solution of the problem appeared in the American Mathematical Monthly[Problem No. 10967, October 2002, Page 759]. The question is: Let A be the adjacency matrix of a simple graph G. (a) For which G is A the incidence matrix of a simple graph? (b) For which G is the A the incidence matrix of a graph isomorphic to G ?

1 Preliminaries

Let A be the adjacency matrix of a simple labeled graph G. A is of order $n \times n$ where n is the number of vertices of graph G. The $(i, j)^{t h}$ entry of A is 1 if and only if v_{i} and v_{j} are adjacent vertices. Otherwise the entry is zero. Clearly, A is symmetric with all diagonal entries zero.

An incidence matrix of a simple labeled graph is of order $n \times m$ where m is the number of edges. Here $(i, j)^{t h}$ entry is 1 if and only if the $j^{t h}$ edge is

[^0]incident on the vertex v_{i}. Hence in each column of an incidence matrix there are exactly two unit entries. The number of 1 's in the $i^{\text {th }}$ row is the degree of the vertex v_{i}.

2 Answer of the first question

First, suppose that G is a simple labeled connected graph.
Theorem 2.1. Let G be a simple connected graph and let A be its adjacency matrix. If A is an incidence matrix of some simple graph G^{\prime} then G is regular of degree 2(i.e., G is a cycle). The converse is true if $n \neq 4$.

Proof: The adjacency matrix A to be the incidence matrix of some simple graph, it is essential that $n=m$ and each column has exactly two unit entries. Since the number of 1 's in the $i^{\text {th }}$ row of an incidence matrix is the degree of the vertex v_{i}, G must be regular of degree 2 .
Claim: G is a cycle of length n .
We have the result:[[1], Exercise 4.4, page 42.]
The following four statements are equivalent for a graph G with p vertices and q edges.
(1) G is unicyclic.
(2) G is connected and $p=q$.
(3) For some line x of G, the graph $G-\{x\}$ is a tree.
(4) G is connected and the set of lines of G which are not bridges form a cycle.

Therefore, G is unicyclic. As, G is regular connected simple graph of degree 2 , it is easy to see that G is a cycle. Hence the claim.

As in [2], for a graph G with 4 vertices G^{\prime} will not be a simple graph. In fact in this case G^{\prime} is not connected, It consists of two loops. Otherwise the converse is true and is clear from the definition of an incidence matrix.

3 Answer of the second question

Denote, the simple graph for which A is the incidence matrix, by G^{\prime}. Let G be the cycle $v_{1} v_{2} v_{3} v_{4} \cdots v_{n-1} v_{n} v_{1}$ where v_{i} are vertices. Hence $A=\left(a_{i j}\right)$ is
such that

$$
\begin{aligned}
a_{i, i+1} & =a_{i+1, i} \\
& =1 \quad i=1,2, \ldots, n-1 \\
a_{1, n} & =a_{n, 1} \\
& =1 \\
a_{i j} & =0 \quad \text { otherwise }
\end{aligned}
$$

Observations 3.1. 1. v_{i} is adjacent to v_{s} and v_{t} in $G(i, s, t$ are all distinct) if and only if v_{s} and v_{t} are adjacent in G^{\prime}.
2. Each row of A (as it is symmetric as the adjacency matrix of G) has exactly two unit entries, therefore, G^{\prime} is also regular of degree 2 .

Theorem 3.2. Let G be a cycle. Then, $G \cong G^{\prime}$ if and only if n is odd.
Proof: If n is odd, it is easy to show that, by the observation 3.1(1), G^{\prime} is the cycle:

$$
v_{1} v_{3} v_{5} v_{7} \cdots v_{n} v_{2} v_{4} v_{6} v_{8} \cdots v_{n-1} v_{1}
$$

Hence $G \cong G^{\prime}$.
Now, suppose n is even.
In this case $n-1$ is odd. Therefore

$$
\begin{gathered}
v_{1} v_{3} v_{5} v_{7} \cdots v_{n-1} v_{1} \\
v_{n} v_{2} v_{4} v_{6} v_{8} \cdots v_{n-2} v_{n}
\end{gathered}
$$

are two cycles in G^{\prime} if $n>4$. Thus $G \not \not G^{\prime}$.
Remarks 3.3. 1. One can easily check that $f: G \rightarrow G^{\prime}$ such that

$$
\begin{array}{ll}
f\left(v_{i}\right)=v_{2 i-1} & i=1,2, \ldots, \frac{n+1}{2} \\
f\left(v_{j}\right)=v_{2 j-(n+1)} & j=\frac{n+1}{2}+1, \frac{n+1}{2}+2, \ldots, n .
\end{array}
$$

is a graph isomorphism, where n is odd and $n \geq 3$.
2. By observations 3.1(1), if v_{s} and v_{t} are adjacent in G then v_{i}, v_{s}, v_{t} each has degree 2 and we have the case $n=3$. But, in general, v_{s} and v_{t} are not adjacent in G when $n>3$.
3. Consider the graph for $n=3$ labeled as below:

$$
e_{1} \equiv\left\{v_{2}, v_{3}\right\}, e_{2} \equiv\left\{v_{1}, v_{3}\right\}, e_{1} \equiv\left\{v_{1}, v_{2}\right\}
$$

In this case, we have same adjacency matrix and incidence matrix i.e., G and G^{\prime} are identical.
4. The construction of G^{\prime} also shows that for $n=4 G^{\prime}$ is not simple.
5. The construction of G^{\prime} in the theorem 3.2 and the observations clearly show that for $n>3, G$ and G^{\prime} are isomorphic if n is odd but not identical.

Remarks 3.4. 1. If G is not connected in the theorem 2.1, then each component is a cycle.
2. If G is a simple regular graph of degree 2 with k components, it is evident that the theorem 3.2 must be true for each component.

References:

[1] Haray F., Graph Theory, Narosa Publishing House.
[2] The American Mathematical Monthly, Vol. 111(5), May 2004, p. 443.

[^0]: *E-mail: mn_dumaldar@yahoo.com
 ${ }^{1}$ The solution had already been acknowledged in The American Mathematical Monthly, Vol. 111, No. 5 (May, 2004), p. 443. The article is the revised version of the solution solution submitted. In particular, the statement of the theorem 2.1 is corrected as per remarks 3.3(4).

